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The elastic moduli c� and c44 of �-Ti with respect to external pressure P �up to about 138 GPa� are
calculated with a first-principles plane-wave pseudopotential method. The accuracy of the calculations regard-
ing the plane-wave cut-off energy, k-point mesh, and transferability of the pseudopotentials is carefully tested.
It is found that the critical pressure beyond which �-Ti satisfies the elastic stability conditions is about 60 GPa.
The Mulliken population analysis shows that both s and p electrons transfer to the d orbitals with increasing
pressure, however, the number of s electrons starts to increase when the pressure exceeds about 70 GPa. The
number of d electrons at the critical pressure is about 2.96, in perfect agreement with the critical number of d
electrons for a stable bcc Ti-V alloy, which demonstrates the correlation between the stability of bcc metals and
their d orbital occupation. The bonding charge density calculations show charge accumulation on the d− t2g

orbitals under high pressure, which may improve the elastic stability of �-Ti.
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The hexagonal-close-packed �hcp� � phase is stable at
ambient conditions for the group IVB metals �Ti, Zr, and
Hf�. At high temperature, the stable phase becomes body-
centered-cubic �bcc� � phase. It was generally believed
that pressure may also stabilize the � phase to low tem-
perature. The phase transition of these metals under pressure
has been extensively investigated both experimentally and
theoretically.1–13 For Zr and Hf, experiments have identified
a phase stability sequence of � to � �collapsed hexagonal� to
� with increasing pressure,1,2 which is also in qualitative
agreement with theoretical calculations.3–6 However, the
pressure induced phase transition in Ti is highly controver-
sial between experiments and theoretical calculations. Room-
temperature �-Ti has not been identified experimentally for
pressures as high as 220 GPa.7 On the other hand, various
first-principles calculations predicted a critical pressure for a
stable � phase from 80 to 136 GPa,6,8–11 and the absence of
the high-pressure � phase in experiments was attributed to
the possible nonhydrostatic stress which distorts the �
phase.10,11

It has been recognized that the instability of �-Ti at am-
bient conditions is closely related to its elastic instability, i.e.,
c�= 1

2 �c11−c12��0, with c� being the elastic modulus of the
shear of �011� plane along �110� direction, and c11 and c12
the elastic stiffness coefficients. The pressure at which c�
=0 provides a lower bound for a stable �-Ti under pressure.
Therefore, the pressure dependence of c� is of fundamental
interest to understanding the stability of �-Ti. The elastic
stiffness coefficients of �-Ti under compression have been
reported by Ahuja et al.6 but without much detail presented.

It was generally accepted that the pressure induced phase
transition in group IVB metals can be ascribed to the elec-
tron transfer from s to d orbital.7 However, recent experi-
ments have shown that the �� to � phase transition in Ti-Zr
alloy under pressure interrupts the s-d electron transfer and
triggers the reverse d-s redistribution of the electrons.14 A
theoretical investigation of the correlation between the pres-
sure dependent d orbital occupation and the elastic stability
of �-Ti would be very interesting.

The purpose of this work is to give an accurate descrip-
tion of the pressure dependence of elastic stability of �-Ti
through first-principles calculations, and to investigate the
response of the electronic structure of �-Ti to the pressure
and its connection to the elastic stability of �-Ti. The calcu-
lations in the present work are performed by the use of
a first-principles plane-wave pseudopotential method based
on density-functional theory,15 implemented as CASTEP.16,17

Since the Ti-3s3p electrons may respond to the high-stress
compression, to describe accurately this response, we adopt
ultrasoft pseudopotentials18 with Ti-3s3p electrons treated as
valence electrons beside Ti-3d4s. The electronic exchange
correlation potential is described within generalized gradient
approximation �GGA� parametrized by Perdew, Burke, and
Ernzerhof �PBE�.19 Brillouin-zone sampling was performed
using Monkhorst-Pack special points.20 We compress the bcc
cell homogeneously so as to model the external hydrostatic
pressure, P.

For a cubic system, the number of the independent elastic
constants reduces to three �c11, c12, and c44� due to the sym-
metry of the crystal. When applying a strain tensor
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to a cubic crystal, one gets

�xx = c11e ,

�yy = �zz = c12e ,

�xy = c44e ,

�zx = �zy = 0, �2�
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according to Hooke’s law.21 � is the stress resulting from the
applied strain, which can be evaluated by the first-principles
method.22,23 The elastic constants are obtained by a linear fit
to the stress-strain relationship as shown above. Four strain
steps �e=−0.003,−0.001,0.001,0.003� are used in our calcu-
lations for the fitting. In the present work, we do not discuss
directly the elastic stiffness coefficients c11 and c12. Instead,
we concentrate ourselves on the elastic moduli, c�= 1

2 �c11
−c12� and c44, which described the stability of the cubic crys-

tals with respect to the shear deformations along �110��11̄0�
and �001��100� directions, respectively. It should be noted
that the strain tensor is applied to the compressed crystal for
those crystals under external pressure. Therefore, the strain
induced by the external pressure is not included in the strain
tensor.

The plane-wave cut-off energy �Ecut�, number of k points,
and quality of the pseudopotentials for both ambient and
high-pressure cases are carefully tested to make sure that the
calculated elastic constants are reliable. We find that, for both
0 and high-pressure cases, the elastic moduli converge very
quickly with increasing Ecut. Converged elastic moduli are
already obtained at Ecut of about 330 eV. Although it may
not be absolutely necessary, we choose a very high Ecut of
400 eV for our plane-wave pseudopotential calculations re-
ported hereafter. The number of k points affects heavily the
calculation of the anisotropically distorted system under
pressure.24 Our test calculations demonstrate that, without
external pressure, both c� and c44 converge very fast with
increasing number of k points. Reasonably stable elastic
moduli are already obtained with the k-point grid of 25
�25�25 corresponding to 455/2197 special k points in the
irreducible Brillouin zone �IBZ� for undistorted/distorted bcc
primitive cell. However, the elastic moduli under high pres-
sure converge extremely slowly. With the densest k-point
mesh �51�51�51� considered in this work, we get an error
bar of about 	3 GPa for both c� and c44. As we will show
later on in this Brief Report, such an error bar does not affect
significantly the trend of the elastic moduli with respect to
external pressure. The transferability of the pseudopotential
under high pressure is checked by comparing the pseudopo-
tential and all-electron full-potential augmented plane-wave
�FP-APW� calculations25 �see Table I�. It is seen that, at low
pressure, the pseudopotential calculations generate essen-
tially the same elastic moduli as those from FP-APW calcu-

lations. At high pressure, the elastic moduli from pseudopo-
tential and full-potential calculations differ slightly from
each other, but the error is still acceptable.

Figure 1 shows the shear moduli, c� and c44, of �-Ti with
respect to pressure for three different k-point grids. It was
shown that the elastic moduli oscillate significantly for the
k-point grid of 25�25�25. With increasing number of k
points, the amplitude of the oscillation decreases. One may
expect that finally c� increases monotonously with pressure,
and c44 gets a maximum at a pressure of about 15 GPa and a
minimum at a pressure of about 90 GPa. The behavior of c44
of �-Ti with respect to external pressure P is quite different
from most other crystals where c44 increases monotonously
with P. However, it is interesting to note that the c44-P curve
of �-Ti is very similar to that of bcc vanadium of which c44
shows a minimum ��0� at about 20 GPa.26 The c44 instabil-
ity is believed to be the trigger of the bcc to rhombohedral
structure transition in vanadium.27

As is seen from Fig. 1, c� is negative at low pressure. It
starts to be positive when P increases to about 60 GPa. Fig-
ure 1 clearly shows that two linear fits have to be respec-
tively applied to the negative and positive c� parts in order to
give a reasonable description of the c�-P relationship,
namely,

c� = − 10.66 + 0.24P, c� 
 0,

c� = − 39.34 + 0.72P, c� � 0. �3�

Born28 has proposed that the elastic constants of a me-
chanically stable lattice have to satisfy

c44 � 0,

c� � 0,

c11 + 2c12 � 0. �4�

TABLE I. Elastic moduli of �-Ti at low and high pressure from
pseudopotential and all-electron full-potential plane-wave calcula-
tions with k-point mesh of 45�45�45. �Details of the full-
potential calculations: WIEN2K package; muffin-tin radius of 2.0
a.u.; augmented plane-wave basis set; plane-wave cut-off energy of
22.5 Ry; XC functional of GGA-PBE.�

Method Lattice constants Pressure c� c44

�Å� �GPa� �GPa� �GPa�
FP-APW 3.2510 0.6 −10.8 41.4

PW-PP 0.3 −10.8 41.2

FP-APW 2.6964 140.1 56.0 46.5

PW-PP 138.0 61.6 44.7

FIG. 1. �Color online� c� and c44 of �-Ti with increasing pres-
sure �circles, triangles, and squares for 25�25�25, 35�35�35,
and 51�51�51 k-point grids, respectively�.
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This is the well-known Born stability criteria. It has been
noted that Born criteria for the elastic stability are only valid
for the crystal under 0 pressure. As derived by Wang et al.29

and Morris and Krenn,30 the internal stability conditions for a
cubic system under hydrostatic compression are

C44 − P � 0,

C� − P � 0,

C11 + 2C12 + P � 0. �5�

It should be noted that the elastic constants Cij in the latter
criteria are obtained with respect to Lagrange finite-strain
coordinates, i.e., the strains induced by the external pressure
are included. The elastic constants obtained in such a way
are different substantially from the elastic stiffness cij in this
Brief Report which is evaluated with respect to the infinitesi-
mal strain applied to the compressed crystal. In our case, the
conventional Born criteria are still at work.31 It is seen from
Fig. 1 that the elastic constants of �-Ti satisfy Born criteria
under the pressure beyond about 60 GPa, i.e., the low-
pressure limit for a stable �-Ti is 60 GPa. In comparison, we
have also investigated the pressure dependence of c� and c44
for bcc Zr and Hf. The critical pressures for elastically stable
bcc Zr and Hf are 10.2 and 7.7 GPa, respectively, much
lower than that for �-Ti, which is consistent with the experi-
mental finding that bcc Zr and Hf have been identified under
pressure but bcc Ti has not.

In order to analyze the electron transfer between different
electronic orbitals, the plane-wave states are first projected
onto the localized linear combination of atomic orbitals
�LCAO� basis sets with s, p, and d components using a tech-
nique described by Sanchez-Portal et al.32 Then electronic
population analysis on the resulting projected states is per-
formed using Mulliken formalism,33 which gives the number
of electrons on different orbitals. Although it is recognized
that the absolute magnitude of the atomic charge generated
by the population analysis has little physical meaning due to
its sensitivity to the atomic basis set, we expect that the
relative electron transfer with respect to pressure may be
qualitatively correct as the same atomic basis set was
adopted for the systems under different pressures.

Figure 2 shows the variation of the number of electrons
on s, p, and d orbitals with increasing pressure. It is seen that
the number of d electrons �Nd� increases monotonously with
the pressure whereas the number of p electrons �Np� de-
creases. It is interesting to note that the number of s electrons
�Ns� decreases with pressure up to 70 GPa; however, further
increasing the pressure results in an increase in the number
of s electrons. The number of d electrons is about 2.74 and
3.28 at P=0 and P=138 GPa, respectively. In comparison,
we have also calculated the Mulliken populations of bcc-V at
0 pressure, which is about 3.78, much larger than that for
�-Ti at 138 GPa.

Of course the increase in Nd of Ti can also be achieved by
alloying with transition metals of more d electrons, such as
V, etc. It is therefore interesting to compare the effects of the
variations of Nd induced by pressure and alloying on the
elastic moduli. As is seen from Fig. 1, the pressure corre-

sponding to c�=0 is about 60 GPa. At this pressure, the
number of d electrons of �-Ti is about 2.96 �see Fig. 2�.
Ikehata et al.34 have calculated the elastic constants of �-Ti
alloyed with V, Nb, Ta, etc. by the use of plane-wave pseudo-
potential method. It was shown that when the composition of
V reaches about 21%, c� of the system raises to 0 GPa.
Considering the Nd of the pure Ti �2.74� and V �3.78� calcu-
lated in this work, Nd of Ti-21%V is approximately 2.96, in
perfect agreement with the Nd corresponding to c�=0 for
�-Ti under pressure. Namely, either by pressure or by alloy-
ing, the critical Nd for an elastically stable � phase is 2.96,

FIG. 3. Bonding charge density on the �011� plane of �a� �-Ti at
0 pressure; �b� �-Ti under pressure of about 138 GPa. Scaling from
−20 to 20 me /Å3. The dashed lines denote a depletion of the
charge whereas the solid ones represent a charge accumulation.

FIG. 2. Number of electrons on s, p, and d orbitals with increas-
ing pressure, relative to those for 0 pressure �2.23, 6.81, and 2.74
for s, p, and d, respectively�.
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which demonstrates the intrinsic connection between the
number of d electrons and elastic stability of the transition
metals with bcc structure.

Figures 3�a� and 3�b� show the bonding charge density of
�-Ti at 0 and high pressure, respectively. The feature of the
bonding charge density of �-Ti at 0 pressure is very similar
to that of the bcc-Y reported by Grad et al.:35 The bonding
charge is concentrated in the octahedral interstices along
	001
 direction. There is no bonding charge in between two
nearest-neighboring Ti atoms along 	111
 direction, which is
responsible for the instability of the � phase at 0 pressure.35

For �-Ti at a pressure of about 138 GPa, the charge density
in the octahedral interstices decreases, and charge accumula-
tion occurs on the d− t2g orbitals such that bonds may build
between Ti atoms along 	111
 direction. Therefore, it is plau-
sible to conclude that pressure induced increase in d popula-
tion �especially d− t2g� strengthens the atomic bond between
Ti atoms along 	111
 direction, which improves the elastic
stability of �-Ti.

In summary, we have calculated the elastic moduli c� and

c44 with respect to external pressure P with an accurate first-
principles plane-wave pseudopotential method. The param-
eters of calculations such as plane-wave cut-off energy,
k-point mesh, and transferability of the pseudopotentials are
carefully tested in order to obtain reliable c� and c44 for
different P. The pressure considered in this work is up to 138
GPa. It is found that the critical pressure beyond which the
�-Ti is elastically stable is about 60 GPa. The Mulliken
population analysis shows that both s and p electrons transfer
to the d orbitals with increasing pressure, however, the num-
ber of s electrons start to increase when the pressure exceeds
about 70 GPa. The number of d electrons for the critical
pressure is about 2.96. The bonding charge density calcula-
tions show charge accumulation on the d− t2g orbitals under
pressure, which may improve the elastic stability of �-Ti.
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